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Outline
• Background

– 3D-LETKF and its 4D-LETKF extension
• Previous Results

– Advantage of 3D-LETKF over PSAS with simulated data on
NASA GEOS-4

– Szunyogh et al. assimilated non-radiance observations with
4D-LETKF on NCEP GFS

• Current Results
– Found large improvements by adding AIRS retrievals!
– Adapted CRTM for LETKF on the NCEP GFS

• Planned Experiments
– Optimize assimilation of AIRS retrievals (correlated errors)
– Assimilate AIRS clear radiances
– Assimilate AIRS cloud-cleared radiances
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Summary of LETKF

 Matrix computations are done in
     a very low-dimensional space: both

accurate and efficient, needs small
ensemble.

 The analysis is computed independently

     at each grid point, highly parallel!

  Very fast! 5 minutes in a 20 PC

    cluster with 40 ensemble members.

  Model independent, does not require
adjoint of the model or the obs. operator.

  It knows about the “errors of the day”
through Pf.
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3D-LETKF (used before)

3D-LETKF finds the best linear combination of the 

ensemble members fitting the observations at the analysis time 

time
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3D-LETKF VS. PSAS with simulated
Rawinsonde data on NASA GEOS-4

RMS (LETKF) – RMS(PSAS)

Zonal Wind

Blue means
LETKF better
than PSAS



6

• With simulated observations, 3D-LETKF is much
better than PSAS everywhere except at the
south pole.

• We are now using 4D-LETKF with the NCEP
GFS model, and real observations.

• Szunyogh et al (2006) assimilated all operational
non-radiance observations.

• We now added Chris Barnet’s AIRS temperature
retrievals.
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4D-LETKF
(better for continuous sat data)

time

4D-LETKF finds the best linear combination of the ensemble 

trajectories fitting the observations within the analysis window
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4D-LETKF vs. SSI on
NCEP GFS

NCEP GFS: T62 Resolution, 28 Vertical levels.

Observations: All operational observations except for
radiances (Non-radiance hereafter)

Verification: Operational NCEP analysis at T254L64,
assimilating all operational observations.

Szunyogh, Kostelich, et al. showed LETKF better than SSI
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Comparison of 4D-LETKF and SSI assimilating all
non-radiances in NCEP GFS  (Szunyogh et al)

NHSH Temperature (48hr)

In NH, the results are
comparable

 In SH, the LETKF results are much
better than SSI
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Assimilating AIRS data
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Data Assimilation of AIRS retrievals
on NCEP GFS with 4D-LETKF

Control Run: Non-radiance data (Szunyogh, Kostelich, et al.).

AIRS Run:
     Non-radiance plus AIRS temperature retrievals provided by

Chris Barnet (NOAA)
    v5 emulation with “qual_temp_mid=0”
   Assumed observation errors  are 2 K and ignored retrieval

error correlations.

Verification: Operational NCEP analysis at T254L64,
assimilating all operational observations. (Not “truth”!).

AIRS temperature retrievals have a significant impact.
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500 hPa Temperature analysis error averaged over Globe

Non-radiance Non-radiance+temperature retrieval (QA)

Result are similar to non-radiance when there
are no available retrievals

No AIRS retrievals

Consistent
reduction of

errors with
AIRS

retrievals!
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500 hPa Temperature analysis error

Non-radiance Non-radiance+temperature retrieval (QA)

Globe SH

Tropics NH
Consistent

positive
impacts even

in the NH!
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Zonal Average temperature analysis error

RMS (non-radiance + retrievals) – RMS (non-radiance)

AIRS Temperature retrievals have positive impact in both
NH and SH, and little impact on tropics.

Blue means
retrievals improve

analysis

Analysis may be
wrong?
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Impact of AIRS Temperature retrievals
on zonal wind

500 hPa Temperature 500 hPa zonal wind

AIRS Temperature retrievals also have positive
impact on other variables
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Impact of Quality Control on analysis
850 hPa Temperature

Non-radiance+temperature retrieval (without QA)
Non-radiance Non-radiance+temperature retrieval (QA)

Quality control makes the results significantly better
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48 Hour Forecast
500 hPa Temperature (SH) 500 hPa zonal wind

48 hour forecasts retain the advantage of
assimilating AIRS Temperature retrievals.

500 hPa Temperature (NH)

Non-radiance Non-radiance+temperature retrieval (QA)
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Zonal Average temperature 48 hour forecast error

RMS (non-radiance + retrievals) – RMS (non-radiance)

AIRS Temperature retrievals have positive impact in both
NH and SH, and little impact on tropics.

Blue means
retrievals improve

forecast
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Conclusions
 LETKF is an efficient and parallel method of data assimilation.

5 minutes in a 20 PC cluster with 40 ensemble members.

 LETKF can use the nonlinear observation operator and does
not require Jacobian or the adjoint. We can compare different
nonlinear forward operators.

 LETKF provides a better analysis than the operational 3D-
VAR scheme with real observations excluding radiances.

 Observed significant improvement from assimilating AIRS
temperature retrievals. Above 100mb the operational analysis
may be wrong or be biased.

 AIRS quality control makes the result better.
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• Adapted CRTM for AIRS radiances to work with
both NASA fvGCM and NCEP GFS model.

• We will apply 4D-LETKF with the NCEP GFS
model, and assimilate simulated AIRS
radiances.

• From perfect model experiments with the NASA
model, expect a significant impact of AIRS
radiances.

Preparation for assimilating AIRS radiance
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Potential Impact of AIRS Radiances

Background Ensemble Spread:
AIRS channel 232

Background Ensemble Spread:
Temperature (500 hPa)

Ensemble spread in AIRS radiance matches the
ensemble spread in temperature.

 Assimilating AIRS radiances with LETKF should
improve temperature analyses.
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Planned Experiments (Retrievals)

1) Tune AIRS temperature retrievals: optimize
observation error covariance for AIRS retrievals
using a new adaptive technique based on Miyoshi
and Kalnay (2005) and Desroziers et al. (2006).

2) Include AIRS humidity retrievals: Will provide
dense and accurate information for the humidity.
Need to adapt LETKF to assimilate humidity
accurately.
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Planned Experiments (Radiances)

1) Assimilate clear AIRS radiances: They are very
accurate but are very sparse.

(Since we do not require the Jacobian and adjoint, we
could use L. Strow’s observation operator)

2) Assimilate cloud cleared AIRS radiances: Abundant
as the retrievals but with simpler observation errors

3) AIRS data impact: Compare analyses and forecasts
to estimate the impact of AIRS alone.
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Planned Experiments

We would appreciate your advice
regarding these experiments!!!!!
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Local Ensemble Transform Kalman Filter

The state estimate is updated
at the central grid red dot

All observations (purple
diamonds) within the local region
are assimilated

Perform Data Assimilation in local patch (3D-window)


